Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis[bis(methoxycarbimido)amine$\left.\kappa^{2} N, N^{\prime}\right]$ bis(perchlorato- κO)copper(II) bis[bis(methoxycarbimido)amine$\left.\kappa^{2} N, N^{\prime}\right]$ bis(methanol- κO)copper(II) bis(perchlorate) methanol disolvate

Guang-Fei Liu, ${ }^{\text {a }}$ Lin-Lin Li, ${ }^{\text {a }}$ Yong Zhang, ${ }^{\text {a }}$ Jian-Ping Lang ${ }^{\text {a,b* }}$ and Seik Weng $\mathbf{N g}^{\mathrm{c}}$

${ }^{\text {a K Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and }}$ Chemical Engineering, Suzhou University, Suzhou 215123, Jiangsu, People's Republic of China, ${ }^{\mathbf{b}}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: jplang@suda.edu.cn

Received 26 September 2006
Accepted 17 October 2006
Online 12 December 2006
The title compound, $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{3}{ }^{-}\right.\right.$ $\left.\left.\mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$, comprises two independent $\mathrm{Cu}^{\text {II }}$ species lying on different inversion sites. In the Cu complexes, a distorted octahedral geometry arises (from basic square-planar N_{4} coordination) from the weak coordination of two perchlorate ions (as $\mathrm{Cu}-\mathrm{O}$) in one species and two methanol molecules in the other (also as $\mathrm{Cu}-\mathrm{O}$). Interactions between the O atoms of the perchlorate anions or methanol groups and the imide or amine NH groups afford an extensive intermolecular hydrogen-bonding network.

Comment

Copper(II) complexes of the bis(methoxycarbimido)amine ligand $\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}(L)$, though relatively uncommon, are interesting because L is usually formed in situ from reactions of $\mathrm{Cu}^{\mathrm{II}}$ salts with sodium dicyanamide (dca) in methanol or mixed solvents (Kozisek et al., 1990; Boca et al., 1996; Bishop et al., 2000; Atkinson et al., 2002; Tong et al., 2003). The formation of L involves a nucleophilic addition of the methanol molecule on the dca anion. This reaction is promoted by a coordinative activation of the $\mathrm{C} \beta$ site of the non-linear dca anion. Under activation, it is susceptible to bending of the linear pseudohalide ($s p$-hybridized C) via N coordination, which alters the $\mathrm{C} \beta$ site to $s p^{2}$-hybridized, with an unsaturated valency and susceptibility to nucleophilic attack. Ligand L when coordinated to $\mathrm{Cu}^{\mathrm{II}}$ exists in its anionic and/or neutral forms. For example, the neutral complex $\left[\mathrm{Cu}\left[\mathrm{N}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\right]$, (II), contains two anionic $\left\{\mathrm{N}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}^{-}$species (Kozisek et al., 1990; Boca et al., 1996; Tong et al., 2003), whereas in $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}{ }^{-}\right.$
$\left.\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \mathrm{Br}_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH} \cdot 0.8 \mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ is biuret), (III), the central $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two neutral $\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}$ ligands to form $[\mathrm{Cu}\{\mathrm{HN}[\mathrm{C}(\mathrm{NH})$ $\left.\left.\mathrm{OCH}_{3}\right]_{2} \mathrm{l}_{2}\right]^{2+}$ dications (Bishop et al., 2000). However, a monocationic complex, $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}\{\mathrm{N}[\mathrm{C}(\mathrm{NH}) \mathrm{O}-\right.$ $\left.\left.\left.\mathrm{CH}_{3}\right]_{2}\right\}\right] \mathrm{PF}_{6}$, has also been isolated by heating (II) with excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in a mixture of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CN}$ (Atkinson et al., 2002). This consists of a neutral L ligand and an anionic $\left\{\mathrm{N}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}^{-}$ligand bonded to $\mathrm{Cu}^{\mathrm{II}}$. Recently, we have reacted $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ with $\mathrm{Na}(\mathrm{dca})$ in methanol and isolated a dicationic complex, (I), with methanol solvent molecules, $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$; we report here the crystal structure of (I).

The asymmetric unit of (I) consists of two halves of the $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\right]^{2+}$ species, two perchlorate anions and two methanol molecules. The existence of two distinct $\mathrm{Cu}^{\text {II }}$ systems in the asymmetric unit is uncommon and only two examples (Curtis \& Puschmann, 2004; Suksangpanya et al., 2003) were found in the Cambridge Structural Database (Allen, 2002). In (I), the $\mathrm{Cu}^{\mathrm{II}}$ complexes lie with the Cu centre on different inversion centres and with each $\mathrm{Cu}^{\mathrm{II}}$ atom coordinated by four N atoms in a basic square-planar geometry, forming two six-membered metallo-rings (Figs. 1 and 2). The $(\mathrm{H}) \mathrm{N}=\mathrm{C}$ bonds are typical double bonds [the average bond length is 1.276 (2) \AA], while the average bond length for the (H)N-C bonds is 1.365 (2) \AA, indicating a weak delocalized π-bonding system. The average $\mathrm{Cu}-\mathrm{N}$ bond length of $1.970(2) \AA$ (Table 1) is slightly longer than in (II) [1.948 (1) \AA]] but close to the corresponding length in (III) [1.965 (3) Å].

In one complex, two perchlorate ions bind weakly to Cu , forming a distorted octahedral $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}-\right.$

Figure 1
A view of the perchlorate-coordinated species in (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. The dashed lines represent $\mathrm{Cu} \cdots \mathrm{O}$ bonds. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]
$\left(\mathrm{ClO}_{4}\right)_{2}$] species. The $\mathrm{Cu}-\mathrm{O}$ bond length $[2.7010(17) \AA$] is longer than in $\left[\mathrm{Cu}\left(L^{\prime}\right)\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad\left[2.543(3) \AA ; L^{\prime}\right.$ is 3-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5,8,12-pentaazacyclotetradecane] and $\left[\mathrm{Cu}(\mathrm{HL})\left(\mathrm{ClO}_{4}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}[2.590(4) \AA]$ (Comba et al., 2002). In the other complex, the two methanol molecules are coordinated to atom Cu 2 to form $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$ octahedral species. The $\mathrm{Cu} 2-\mathrm{O}$ distance $[2.7192(18) \AA$] is much longer than those found in $\left[\mathrm{Cu}\left(L^{\prime \prime}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\left[2.298\right.$ (4) $\AA ; L^{\prime \prime}$ is 1-(2-pyridyl)benzotriazole; Richardson \& Steel, 2003] and $\left[\mathrm{Cu}\left(L^{\prime \prime \prime}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]\left(\mathrm{SiF}_{6}\right)_{2}$ [2.481 (5) $\AA ; L^{\prime \prime \prime}$ is di-2-pyridylamine; Casellas et al., 2005].

The crystal structure of (I) is stabilized by extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 2). The O atoms of the coordinated perchlorate anions in the $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right]$ species interact with the imide groups of neighbouring species to afford intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, thereby forming one-dimensional chains along the a-axis direction.

Figure 2
A view of the methanol-coordinated species in (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. The dashed lines represent $\mathrm{Cu} \cdots \mathrm{O}$ bonds. [Symmetry code: (ii) $-x,-y+3,-z+2$.]

Figure 3
The layer structure of (I) parallel to (01 $\overline{2}$). The dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions.

The $\left[\mathrm{Cu}\left\{\mathrm{HN}\left[\mathrm{C}(\mathrm{NH}) \mathrm{OCH}_{3}\right]_{2}\right\}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]^{2+}$ complexes are also linked via intermolecular interactions between the O atoms of coordinated methanol molecules and amine groups to form another one-dimensional chain. Between the two chains are sandwiched free perchlorate anions and methanol solvent molecules. In addition, the O atoms from the free perchlorate ions and methanol solvent molecules interact with the imide and amine groups of adjacent species of the two chains to afford a two-dimensional network along the ($01 \overline{2}$) plane (Fig. 3). Furthermore, the O atoms of the coordinated perchlorate anions interact with the coordinated methanol molecules of adjacent layers to afford hydrogen bonds $\left[\mathrm{O} 14 \cdots \mathrm{O} 11^{\text {iv }}\right.$ and $\mathrm{O} 14 \cdots \mathrm{O} 12^{\mathrm{iv}}$; symmetry code: (iv) $-x$, $-y+2,-z+1]$, thus forming a three-dimensional structure.

Experimental

To a solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(370 \mathrm{mg}, 1.0 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ was added a solution containing sodium dicyanamide $(100 \mathrm{mg}, 1.12 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$. The mixture was stirred for 2 h at 323 K to form a green solution. Slow diffusion of diethyl ether into the filtrate gave rise to purple crystals of (I) (yield 48%). Analysis found: C 20.23, H 4.38, N 14.15\%; calculated for $\mathrm{C}_{20} \mathrm{H}_{52} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{12} \mathrm{O}_{28}$: C 20.40 , H 4.45, N 14.27%. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): $3008(w), 2942(w), 2920(w), 1633(m), 1558(m), 1465(m), 1427(m)$.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right]-$
$\left.\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2} \mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]-$
$\left(\mathrm{ClO}_{4} \cdot 2 \mathrm{Cl}_{2} \mathrm{CH}_{4} \mathrm{O}\right.$
$M_{r}=1177.64$
Triclinic, $P \overline{1}$
$a=7.444(2) \AA$
$b=10.067(2) \AA$
$c=15.330(3) \AA$
$\alpha=85.06(3)^{\circ} \AA$
$\beta=89.91(3)^{\circ}$
Data collection
Rigaku Mercury diffractometer
ω scans
Absorption correction: multi-scan
\quad (Jacobson, 1998)
$T_{\text {min }}=0.684, T_{\text {max }}=0.731$

$$
\begin{aligned}
& \gamma=80.20(3)^{\circ} \\
& V=1127.7(5) \AA^{3} \\
& Z=1 \\
& D_{x}=1.734 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.28 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Block, purple } \\
& 0.32 \times 0.30 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

$\beta=89.91$ (3) ${ }^{\circ}$

Data collection

Rigaku Mercury diffractometer ω scans (Jacobson, 1998)
$T_{\text {min }}=0.684, T_{\text {max }}=0.731$

> 10868 measured reflections 4082 independent reflections 3857 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$ $\theta_{\max }=25.3^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0482 P)^{2} \\
&+0.6301 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 13$	0.84 (1)	1.95 (1)	2.774 (2)	168 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 10^{\text {iii }}$	0.84 (1)	2.25 (1)	3.067 (2)	165 (2)
N3-H3 . $\mathrm{O}^{\text {O }} 0^{\text {v }}$	0.84 (1)	2.29 (1)	3.102 (2)	163 (2)
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {ii }}$	0.84 (1)	2.23 (1)	3.011 (2)	154 (2)
N5-H5 . O 5	0.84 (1)	2.50 (2)	3.123 (2)	132 (2)
N5-H5 . ${ }^{\text {O }} 12{ }^{\text {iv }}$	0.84 (1)	2.48 (2)	3.078 (2)	129 (2)
N6-H6 . . $\mathrm{O}^{\text {d }}{ }^{\text {v }}$	0.84 (1)	1.98 (1)	2.808 (2)	169 (2)
O13-H13 \cdots O6	0.83 (1)	2.02 (1)	2.833 (2)	166 (3)
O14-H14...O11 ${ }^{\text {iv }}$	0.83 (1)	2.33 (2)	3.101 (2)	155 (3)
$\mathrm{O} 14-\mathrm{H} 14 \cdots \mathrm{O} 2^{\text {iv }}$	0.83 (1)	2.47 (2)	3.196 (3)	146 (3)

Symmetry codes: (ii) $-x,-y+3,-z+2$; (iii) $-x,-y+1,-z+1$; (iv) $-x,-y+2$,
$-z+1$; (v) $x+1, y, z$.

The methyl H atoms were included in the refinement in the ridingmodel approximation $\left[\mathrm{C}-\mathrm{H}=0.98 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$; the groups were rotated to fit the electron density. The N - and O -bound H atoms were located in difference Fourier maps and were refined with distance restraints $[\mathrm{N}-\mathrm{H}=\mathrm{O}-\mathrm{H}=0.85(1) \AA]$; their displacement parameters were refined freely.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271036 and 20525101), the NSF of Jiangsu Province (grant No. BK2004205), the State Key Laboratory of Coordination Chemistry of Nanjing University,
the Qin-Lan Project of Jiangsu Province and the University of Malaya for supporting this study.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3051). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Atkinson, I. M., Bishop, M. M., Lindoy, L. F., Mahadev, S. \& Turner, P. (2002). Chem. Commun. pp. 2818-2819.
Bishop, M. M., Lindoy, L. F., Mahadev, S. \& Turner, P. (2000). J. Chem. Soc. Dalton Trans. pp. 233-234.
Boca, R., Hvastijova, M., Kozisek, J. \& Valko, M. (1996). Inorg. Chem. 35, 4794-4797.
Casellas, H., Pevec, A., Kozlevcar, B., Gamez, P. \& Reedijk, J. (2005). Acta Cryst. E61, m1120-m1122.
Comba, P., Lampeka, Y. D., Nazarenko, A. Y., Prikhod’ko, A. I. \& Pritzkow, H. (2002). Eur. J. Inorg. Chem. pp. 1464-1474.

Curtis, N. F. \& Puschmann, H. (2004). Acta Cryst. C60, m410-m413.
Jacobson, R. (1998). Private communication to Rigaku Corportion, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kozisek, J., Hvastijova, M. \& Kohout, J. (1990). Inorg. Chim. Acta, 168, 157158.

Richardson, C. \& Steel, P. J. (2003). J. Chem. Soc. Dalton Trans. pp. 992-1000.
Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Suksangpanya, U., Blake, A. J., Hubberstey, P., Parker, D. J., Teat, S. J. \& Wilson, C. (2003). CrystEngComm, 5, 23-33.
Tong, M. L., Wu, Y. M., Tong, Y. X., Chen, X. M., Chang, H. C. \& Kitagawa, S. (2003). Eur. J. Inorg. Chem. pp. 2385-2388.

